A Quantum Mind?

The field of quantum mechanics offers an insight into how nature solves seemingly impossible problems. The field loomed into view when mathematicians worked with imaginary and complex numbers. The square root of -1 is an imaginary number.   Such a number was considered an impossibility. Yet, scientists speculated with equations using such numbers. Surprisingly, those equations explained some bizzare results of scientific experiments.

Conventional physical laws clearly differentiated the behaviors of particles and waves. Particles were obviously different from waves.  Surprisingly, research revealed that photons behaved simultaneously like both waves and particles. Those new equations gave a logical rationale for those results. Those equations were seen to govern the very behavior of our universe. Those equations also led to powerful new routines in the newly emerging field of quantum computing. The experience gained from these routines may also provide a rationale for some of the most mysterious capabilities of the human mind.

  • How does the brain remember millions of smells?
  • Combinatorial coding by the olfactory system.
  • Axon hillocks "summate" the incoming information.
  • Axons trigger specific functions in the nervous system.
  • The meaning of combinatorial coding.
  • Axon hillocks store memory.
  • Quantum computing deals with an infinity of probabilities.
  • Navigation by birds.
  • Quantum entanglement by the Cry4 protein.
  • Quantum effects may operate in the axon hillock.

This hypothesis is unique in accounting for the speed of human intuition; in examining the future of Artificial Intelligence (AI). in suggesting methods for controlling the mind. These thoughts have been gathering millions of page views from all around the world.  The 1989 beginning of this exciting mission was a Prolog AI program.  It could diagnose 8 diseases hinged on the user entering answers to a long string of questions.  In contrast, a doctor could identify a disease out of 8000, without even asking a single question, with just a glance. People were streets ahead in spotting patterns. Was the mind using a shortcut?

The Prolog program could diagnose 8 diseases, which shared 13 symptoms. It used an algorithm, a step by step procedure, for the diagnosis. Out of curiosity, I began testing an alternate algorithm in a spreadsheet.  Its first step was to SELECT all diseases WITH a particular symptom. But, instead, the algorithm would DELETE all diseases WITHOUT the symptom. The variation related to an unintended twist in its "if/then" logic.

So, when I clicked "Yes" for one particular symptom to test the first step, the spreadsheet DELETED 7 out of the 8 diseases, leaving behind just one disease.  Surprisingly, that disease was indicated by that symptom.  In just one step, it had given the correct diagnosis. As with the doctor, it was a split second verdict!  In essence, the algorithm had simply ELIMINATED all diseases without the symptom.  Was elimination from a known list the trick used by nature for its speed? Could that process be intuition?

Could elimination provide a valid search strategy? I tasked a programmer to write the code for an ambitious new Expert System for 225 eye diseases. Its algorithm eliminated both irrelevant diseases and their connected questions, for each answer. I presented the Expert System to a panel of doctors. "It identified Angular Conjunctivitis, without asking a single stupid question," said a doctor. The AI algorithm was satisfactorily diagnosing all the eye diseases in the textbook! The algorithm was a potent tool. It took me a while in figuring out how the mind of a doctor could be doing split second diagnosis.

Can An Algorithm Be Controlling The Mind?
I am not a physician, but an engineer. Way back in 1989, I listed how the ELIMINATION approach of an AI Program could be uncovering a mystery of the mind.  How could a doctor be instantly identifying Disease X out of 8000 diseases?  How could the doctor's mind isolate a single disease/symptom (D/S link out of trillions of possible links in less than half a second? 

This list of 6 unique new premises could be explaining the enigma and revealing an exciting glimpse into the mind:

First, the total born and learned knowledge available to the doctor could only be existing as the stored/retrieved data within the 100 billion neurons in his brain.

Second, axon hillocks could be storing that knowledge as combinatorial memories. Residing at the head of the axonal output of each neuron is its axon hillock, receiving thousands of inputs from other neurons. Each hillock is known to be making the pivotal neuronal decision about received inputs within 5 milliseconds. The hillock could be opting to fire impulses, if it recalled a combination. If not, it could be opting to inhibit further impulses.  Or, it could be recording new combinations, adding to its memory store.  These choices and recordings were programming axon hillocks to logically store and respond to vast memories, making the mind intelligent.

Third, combinations are known to be providing nature with its most powerful mode of coding. Science has been reporting the neuronal memories provided by combinations for millions of smells. Each axon hillock is capable of processing more combinations than there are stars in the sky. Each new combination stored by an axon hillock could be recording a new set of relationship links remembered by the mind.  The doctor's brain could be storing all the D/S links known to him as combinations in the relevant axon hillocks of his brain.

Fourth, instant global communication is working today as a practical reality. Millions of cells of spreadsheets are instantly reflecting single inputs into cells. The doctor observes a symptom. Within the instant of his observation, the feedback and feed forward links of his brain could be informing all related D/S axon hillocks of the presence of the symptom as a combinatorial transmission.  Only the D/S link of Disease X could be recalling the combination and recognizing the symptom.

Fifth, on not recognizing the symptom, all other disease related D/S hillocks could be instantly inhibiting their impulses. But, the D/S links of Disease X could be continuing to fire. Those firing D/S link would be recalling past complaints, treatments, patients, references and signs of Disease X, thus confirming the diagnosis, in the doctor's mind.  In this manner, rational axon hillocks could be enabling the prescient speed and wisdom of the mind.

Sixth, specific regions of the brain are known to be identifying sensory inputs, recognizing objects and events, triggering emotions and providing motor responses. Axon hillocks of those regions could be rationally responding to inputs and triggering those functions. The axon hillocks of the amygdala could be storing memories of threats during life, or during prehistoric encounters. The sight of a snake could be triggering fear signals from the organ. Those signals could be triggering reflexive flight or freeze responses out of the axon hillocks of the motor regions.

Finally, common sense can calm such reflexive responses through routines for self awareness, as suggested in these pages. Sound judgement
can be toughening the mind by making it patient and by controlling its temper. Grief or guilt will not be shattering experiences; reason can be the tool for conquering fear; for escaping from the well of sudden disappointment; avoiding dissatisfaction with life; avoiding despair over the lack of meaning in life. These urged routines, which provide effective mind control, are now benefiting thousands of people.

orldwide interest in this website is acknowledging its rationale. Not metaphysical theories, but pattern recognition and infinite axon hillock memories could be explaining the astonishing speed of human intuition. Several years after 1989, a Nobel Prize began acknowledging combinatorial olfactory codes. Over three decades, this website has been assembling evidence of how neural pattern recognition is powering emotional and physical behaviors. It has been receiving over 2 million page views from over 150 countries.

The Quantum Mind 
How Is The Huge Human Memory Stored?
The olfactory system is a marvel of the nervous system. With an olfactory epithelium about forty times larger than in humans, dogs can detect human scent on a glass slide that has been lightly fingerprinted and left outdoors for as much as two weeks, or indoors for as long as a month. Leslie Vosshall reports that, in her lab, ordinary volunteers, (not wine tasters or perfumers), could clearly remember and distinguish between different combinations of 128 odor molecules, indicating an average human ability to differentiate between 1 trillion smells. After all, one must remember the previous smell to differentiate it from the subsequent one. How is the memory of a smell stored?  Science has no explanations of how the mind forms memories.  Could quantum science provide a clue?

The Quantum Mind
What Are Combinatorial Memories?
A few of the 50 million receptors in the olfactory epithelium fire nerve signals on recognition of octanol molecules. The nerve impulses cascade through the axons of a receptor array, a glomeruli array and a mitral cell array. The same molecule is recognized by several different receptors and the axon of a glomerulus responds to several different odor molecules.

Octanol is remembered by a combination of four different glomeruli. Octanic acid, in which the hydroxyl group of octanol is replaced by a carboxyl group, is remembered by six different glomeruli.  
In 1999, researchers reported that the olfactory system uses a combinatorial coding system (Nobel Prize 2004).  This process enabled the system to recognize that octanol has an orangy rose-like scent and that octanic acid smells like sweaty feet  How does combinatorial firing recognize smells?  What role does the neuron play in the process?

The Quantum Mind
How Does The Axon Hillock Decide?

Neurons are basic functional units of the nervous system. They receive signals called action potentials at the synapses of their dendrites. The incoming dendritic signals support further activity, or inhibit the receiving neuron. The neurons integrates the signals and send outputs through their axons. The soma, the cell body of the neuron, contains the nucleus and the axon hillock. Science believes that the axon hillock sums up the excitatory and inhibitory signals it receives to send an all, or nothing output through the axon. The "summation" is thought to be done at the axon hillock, from which the axon extends outwards. The flow of impulses through axons power every activity of the mind. A group of axons must fire for you to take a breath, remember a story, sing song, or write a word.

The Quantum Mind
Why Is The Axon Hillock Pivotal?

The summation at the axon hillocks of 100 billion nerve cells rule all mental activity.  A single axon of a sensory neuron triggers the knee-jerk reflex by triggering the action of a motor neuron. When someone taps the tendon below your knee, motor neurons fire to contract the quadriceps to straighten the knee. If the axon errs, problems arise.

For example, 
for a particular patient, crocodile tears are triggered by tastes and aromas. Because of a lesion in the facial nerves, the axons from the salivary nerves regenerated and linked wrongly to the tear duct system. On receiving salivary impulses, the tear duct complex triggered tears. A single axonal fault caused this problem. The axons of neurons deliver pivotal instructions to other neurons, muscles or glands to activate specific functions. The nervous system works because its axon hillocks deliver functional decisions. But, is "summation" the key process within the axon hillocks?

The Quantum Mind
How Do Combinations Work?

Summation, one of the most fundamental assumptions of science, may hide a powerful activity,  Anyway, axon hillocks do not summate. They differentiate between the axonal inputs from other neurons. Only the impulses received from the sensory axon sets off the knee-jerk reflex. The source of the axon is critical for combinatorial messages. The identity of each element of a combination is critical. To illustrate the concept, let us assume that the olfactory glomeruli have alphabetic labels. Assume that octanol was remembered by a combination of six different glomeruli (say O, R, A, N, G, E); that octanic acid was remembered by four different glomeruli, (say S,W,E,A,T). If the mitral cell array "summated" received messages, it would interpret the messages as SIX, or FOUR. But, they indicated ORANGE, or SWEAT. This pivotal memory for combinations by axon hillocks can be the basis for human memories.

The Quantum Mind
Can The Axon Hillock Hold Memories?

It is only possible for the mind to recognize the smell of an orange, if it remembers the smell. A combinatorial memory is matched with a combinatorial sensory input. A single synapse of a dendrite cannot record a combinatorial memory. Only the axon hillock can view the whole picture. Only combinatorial memories in axon hillocks can logically trigger mental activities. Even receptor neurons fire, because each receptor has a coded memory for a specific sensory input. Axon hillocks in the association regions use memories to recognize objects and events.

Inherited or acquired axonal memories of motor systems fire to contract or relax muscles and to control body systems. Implicit axon hillock memories operate in the subconscious and are not available for conscious axonal recall. Declarative axon hillock memories permit such recall. Working memories are combinatorial axonal memories cycled for brief periods. Procedural axon hillock memories power the motor system to play a musical instrument, or to ride a bike.  Quantum science may explain how axon hillocks recall memories.

The Quantum Mind
How Does Quantum Computing Work?

Quantum mechanics opened a new view of how nature solves seemingly impossible problems. Qubits are the basic units for quantum computation. They define probabilities for individual coins in a group of flipping coins. Equations represent the shared rotational positions of several rotating coins. They represent interference, where coins bump into each other to change the outcome. They postulate superposition where the midair coin is simultaneously heads and tails.

Realizing the immense potential, maths created new algorithms and physics created quantum computers.  Here, controlled currents through Josephson junctions produce quantum effects.  Controlled current flows manipulate qubits in an interference pattern to produce a finite answer, while cancelling out millions of probabilities. They help drug companies devise new medicines, or create new materials with desired properties. They can find the fastest route between two points separated by several rivers crossed by several bridges. Science suggests that nature uses quantum computing in the brains of birds.

The Quantum Mind
How Do Migrating Birds Find Directions?

Around the world, birds, insects, and other species take the most direct routes to their watering holes, or to migration destinations. The hippocampus carries a visual, olfactory and gustatory map of their worlds. Typically, eye movement and head direction cells act as an inertial compass to chart their geographic movement and position. These eye and ear coordinates are mapped by the head direction cells, grid cells, and border cells. These cells contain a neural map of their sensory spatial environment. But, for migrating birds which cross vast oceans, there are few visual clues.

Each year, the black-capped, red-billed arctic terns make a 49,700 mile round trip between breeding grounds in the Arctic and the Antarctic. With few visible landmarks,  these birds take paths, which lead them, with an accuracy of 1 foot in 1000 feet, to their destinations 10,000 miles apart. They need to maintain a uniform magnetic direction and be aware of their exact position on the globe. Scientists believe that the birds carry an accurate map of the variations in the strengths of earth's magnetic field along their oceanic flight paths.

The Quantum Mind
What Is The Significance Of The Cry4 Protein?

Scientists believe that it may be the quantum entanglement of the Cry4 protein, found in the retina in the eyes of migratory birds, which enables magnetic vision. When exposed to blue light, these proteins act as light-activated switches and empower the 24 hour cycle of the circadian clock. To prepare for the journey, birds store up on food and Cry4 in the weeks preceding the migration. This spike in Cry4 is not observed in non-migratory birds during the same time of the year.

Scientists theorize that the switching of states between molecules during quantum entanglement conveys key data to power bird navigation. When a particle of light hits the Cry4 protein, an electron is knocked out of one molecule and joins another. The two molecules then have an odd number of electrons, creating a radical pair. Since both radicals are created at the same time, they are locked into quantum entanglement. Even when physically separated, they are synchronized. Until the molecules recover, they flip-flop back and forth between two distinct chemical states.  A molecule in one of the two states produces a specific chemical which influences the receipt of magnetic signals in the bird’s visual cortex. The other molecule does not.  The proportion of time that this radical pair spends in one chemical state versus the other provides key positioning data. Quantum entanglement may transmit impulses from the retina of the birds to its navigation system.

The Quantum Mind 
Does The Mind Use Quantum Effects?

Science suggests that nature uses quantum computing in the brains of birds.  Controlled current flows manipulate qubits in the quantum computer. At the critical axonal hillock level, quantum effects may influence the "summation" which triggers the all or nothing action potential. Neurons receive action potentials at the synapses of their dendrites. The incoming dendritic signals vary dramatically in strength and frequency. Varying current flows into the axon hillock may manipulate information in an interference pattern to produce an answer, while cancelling out millions of probabilities. 

Genetic codes may carry inherited responses to the incoming signals. Changes in protein structures may store memories of past inputs. Superpositions, where two flipping coins are simultaneously heads and tails may be evaluated.  Not "summation," but quantum computation may deliver an all or nothing response to problems using  inherited and acquired memories. The grandeur of the mind may flow from the infinite range of probabilities and possibilities in the quantum space within the 100 million axon hillocks in the nervous system.  The wisdom existing in those spaces may have powered the genius of Einstein and Mozart.  The decisions made in those spaces enable us to breathe, to weep in anguish and enjoy the sunset.

Jordan Peterson - Happiness
Can Artificial Intelligence Replace Humans?

JUST THINK...   What happens when you are beginning to talk? Your nervous system is picking an emotion, articulating an idea around it, choosing apt words from a vocabulary of thousands of words, arranging them in lexical and grammatical order and adjusting the pitch of your voice. Before you speak you are having no consciousness of the words you will use. Who is actually taking charge?  This question leads to the question "What is consciousness itself?" Is consciousness a spirit living in a human body?  Is it a life form that emerges from the nervous system?  This is the living hard problem of consciousness.