Can The Promised Tesla Bot Bring
A Sudden End To Human Life On Earth?

The Limbic System Decides

Free will does not exist. Inherited instincts within the limbic system (LS) make the final decisions of your mind. Instinctual behavior is triggered by the programmed combinatorial codes of the nervous system. The evolutionary need for survival generated system codes, which overrule the will of the individual. It is not your will, but the LS, which chooses your behavioral response - merciless attack, or noble self sacrifice. You can personally verify this process.

Your will is exercised by the the highest known intelligence in the universe, residing in the prefrontal regions (PFR). The PFR was the first decision maker. But, evolution took away its power to make the final decision, when it added a multitude of other decision makers. Because, survival decisions demanded many patterns of behavior. Focused behaviors were needed when attacking the enemy, escaping from danger, feeding, or resting. Nature assembled innumerable behavior programs to achieve each objective. Each behavior pattern had to bypass alternative options. There can be only one final choice. An animal had to either eat grass, or quench thirst.

Intuition was the instant elimination process, which inhibited alternative behaviors and focused all available resources to achieve a particular objective. Each behavior pattern required an "either, or" decision. Nature used an existing mechanism for this eliminative process. Francois Jacob noted this adaptive quality of evolution. “In contrast to the engineer, evolution does not produce innovations from scratch. It works on what already exists, either transforming a system to give it a new function or combining several systems to produce a more complex one.” The LS adapted the control strategy exercised by the spinal cord to make the decisions of the mind.

  • Nature does not trust your will to make your survival decisions. 
  • Evolution adapted the strategy of the spinal cord to the decisions by the Limbic System. 
  • The PFR was an early decision maker. The hypothalamus makes decisions concerning bodily needs. 
  • The amygdala protects you from danger 
  • The hippocampus provides episodic memories for contextual decisions. 
  • The septal nuclei reinforce the LS decisions. 
  • The insular cortex brings in social context to LS decisions. 
  • The current focus of the mind is decided by coded memories of the LS. 
  • Growth and maturity change LS decisions. 
  • You can personally verify the fragility of your free will.

Could An Amazing Algorithm Have Stunning Control Over Your Mind?
This is what happens when an engineer researches the mind. Way back in 1989, the writer, an engineer, catalogued how the ELIMINATION approach of an AI Expert System could reveal a way by which the nervous system could store and retrieve astronomically large memories.  That historic insight is central to the six irresistible premises presented in this website. 

Behind the scenes, these premises conceal an eye-opening revelation.  About the incredible speed of intuition.  A physician is aware of thousands of diseases and their related symptoms.  How does he note a symptom and focus on a single disease in less than half a second?  How could he identify Disease X out of 8000 diseases with just a glance?  

First, the total born and learned knowledge available to the doctor could not exist anywhere other than as the stored/retrieved data within the 100 billion neurons in his brain.  The perceptions, sensations, feelings and physical activities of the doctor could only be enabled by the electrical impulses flowing through the axons of those neurons.  The data enabling that process could be stored as digital combinations.

Second, combinatorial decisions of neurons cannot be made by any entity other than the axon hillock, which decides the axonal output of each neuron.  The hillock receives hundreds of inputs from other neurons.  Each hillock makes the pivotal neuronal decision about received inputs within 5 milliseconds.  A
xon hillocks could be storing digital combinations.  It could be adding each new incoming digital combination to its memory store.  The hillock could fire impulses, if it matched a stored combination. If not, it could inhibit further impulses.  Using stored digital data to make decisions about incoming messages could make the axon hillocks intelligent.

Third, combinations are reported to enable a powerful coding mode for axon hillocks.  Olfactory combinatorial data is known (Nobel Prize 2004) to store memories for millions of smells.  Each one of 100 billion axon hillocks have around a 1000 links  to other neurons.  The hillocks can mathematically store more combinations than there are stars in the sky. Each new digital combination could be adding a new relationship link.  In this infinite store, specific axon hillocks could be storing all the symptom = disease (S=D) links known to the doctor as digital combinations.

Fourth, instant communication is possible in the nervous system.  Within five steps, information in one hillock can reach all other relevant neurons.  Just 20 Ms for global awareness.  Within the instant the doctor observes a symptom, 
feedback and feed forward links could inform every S=D link of the presence of the symptom. Only the S=D link of Disease X could be recalling the combination and recognizing the symptom.

Fifth, on not recognizing the symptom, all other S=D hillocks could be instantly inhibiting their impulses. The S=D links of Disease X could be continuing to fire. Those firing S=D link would be recalling past complaints, treatments and signs of Disease X, confirming the diagnosis.  This could be enabling axon hillocks to identify Disease X out of 8000 in milliseconds.  Eliminating improbable (unrecognized) prospects to arrive at a possible (recognized in the past) solution powers the powerful inductive logic of the mind!

Worldwide interest in this website acknowledges its rationale. Not metaphysical theories, but processing of digital memories in axon hillocks could be explaining innumerable mysteries of the mind.  Over three decades, this website has been assembling more and more evidence of the manipulation of emotional and physical behaviors by narrowly focused digital pattern recognition.  It has also received over 2 million page views from over 150 countries.

Limbic System
How Does A Neural Region Reconcile Conflicts?

The spinal cord manages interaction of over 60,000 motor neurons. Using feed back/feed forward links, the spinal cord relaxes all the opposing muscles for all contracting muscles. This incredibly coordinated action occurs thousands of times per second, when you sing a song or write a letter. The limbic system has a million fibers, which carry feed back/feed forward links between a massive range of conflicting emotion signals. Fear, sadness, disgust, contempt, curiosity, surprise, love, pleasure, embarrassment, guilt, and shame impact on behavior. Competing with each other, emotions are generally agreeable, or disagreeable. The LS grants control to a single emotion, while inhibiting conflicting ones. Anger gives way to fear. Nature adapted the spinal cord motor control strategy in the LS to manage emotional controls.

Limbic System
How Did Nature's Control Systems Evolve?

Evolution assembled innumerable pattern recognition capabilities to animals. It gathered regions to identify touch, odors, taste, vision and sounds. Association regions developed to recognize objects and events from these identified sensory inputs. Early on, the PFR used this data to make global decisions for animals. The spinal cord and regions below followed those decisions. The nuclei, which perform PFR functions are clusters of neurons in birds and reptiles, while they are constructed as layers of neurons in mammals. Because of the structural differences, some scientists questioned the existence of a counterpart to the PFR in birds and reptiles. But, genetic research has confirmed that this essential and focused decision making function exists in all animals.

Detlev Arendt identified a common set of genes specifying the essential PFR functions, that exist in the common ancestors of annelids, insects and vertebrates. These master regulatory genes specify the identity and positional information of the forebrain, midbrain, hindbrain and even the cerebral cortex. Such genes define the mature characteristics of the region. Detlev Arendt identified the patterns and sequences of genes which were expressed in the cortex of mammals and the “pallium” of birds and reptiles. The same patterns were expressed in the “mushroom bodies,” which are the sensory-associative regions for annelid worms. In the early stages, the PFR enabled the rational evaluation of data, without resort to emotional responses. But, in the end, it is the LS, which chooses to override the options to behave rationally, or emotionally, to meet the urgent demands of the body.

Limbic System 
What Was The Earliest Reflexive Control System?

The LS ring is linked to numerous control systems. The hypothalamus receives inputs about the needs of the body. Being older than other organs in the LS, the organ controls the reproductive, vegetative, endocrine, hormonal, visceral and autonomic functions of the body. Caloric and glucose receptors indicate the need for food and nourishment. Osmo-receptors indicate a a need for water. The organ has thermo-sensitive neurons, enabling it to decide to respond to excessive external cold or heat. The organ is sensitive to olfactory inputs related to sexual status.

The hypothalamus acts reflexively, in an almost on/off manner, seeking to maintain the experience of pleasure and escape or avoid unpleasant, noxious conditions. One region of this organ activates the sympathetic system, which heightens emotional arousal, while another region energizes the parasympathetic system, which dampens down the metabolic and somatic correlates of emotional tension. Combinatorial codes of the feed back/feed forward LS links enable the hypothalamus to inhibit alternate options to meet urgent bodily needs.

Limbic System
How Does The System Seek To Avoid Pain?

Early on, the amygdala became a component of the LS. It has the ability to remember sensory inputs, which hold a potential for pain. To save time, the sensory inputs to the amygdala bypass the inputs to the cortex. Nociceptive neurons fire in response to painful stimuli such as high temperature, low pH and tissue damage. Nociception has been documented in non-mammalian animals, including fish nematode worms, sea slugs, and fruit flies. When amygdala senses danger, it triggers the fear, or anger emotion. The organism becomes aroused and alert. Electrical stimulation of the lateral amygdala initiates anxious glancing and searching movements of the eyes and head. When these signals reach the hypothalamus, the organ initiates pain avoidance behavior. Combinatorial codes in the LS decide when the signals from the amygdala should over ride other behavior options.

Limbic System
How Does The Nervous System Recall Space & Time?

A part of LS, the hippocampus assists in the storage of combinatorial memories in the space/time/emotions context. An emotion indicates a crisis point, where a decision was made during the day. The hippocampus stores episodic memories in the context of the geographic location, where the emotional event occurred. The hippocampus has spatial maps maintained by "place" neurons linked to specific environmental features and landmarks. Hippocampal damage causes a loss of the ability to store and recall episodic memories.

During REM episodes of sleep, the hippocampus activates those regions, which were active during the experience of an event, strengthening the combinatorial links of the emotional signal to the sensory event memory. Subsequent recall of the emotion recalls the event. The hippocampus grants the LS the time critical link to real time decision memories.

Limbic System
What Is The Role Of The Septal Nuclei?

The septal nuclei contributes to the energization of focus as well as the inhibition of alternate options by the LS feed back/ feed forward circuits. Signals from the septal nucleus energize the system on a single focus, while inhibiting activity in unrelated regions. This group of neurons has copious links to the control centers in the amygdala, the hippocampus, the hypothalamus and the brain stem reticular formation. Activation of the septal nucleus stimulates neurotransmitter production, which motivates the organism. It also has an inhibitory-GABAnergic effect, which empowers intuition by inhibiting irrelevant neural activity. The septal nucleus influences the generation of rhythmic slow activity (theta) which indicates hippocampal arousal connected to learning and memory. Lesions in the septal nucleus abolish hippocampal theta and impact on memory.

Limbic System
What Enables Self Awareness & Limb Ownership?
The insular cortex enables the LS to make self and socially aware decisions. It is a portion of the cerebral cortex folded deep within it. Its front portion is considered to be a part of LS. The insular cortex has access to bodily responses including movements of the body; by pain, temperature, itch and changes in local oxygen status. These inputs enable the organ to perform the function of identifying the self as an independent entity. Mirror neurons within the organ recognize the implications of social interactions to trigger a range of social emotions, including shame, guilt and compassion.

Limbic System
How Are Opposing Muscles Controlled?

Decisions of the mind range between numerous conflicting options. Early in the course of evolution, nature developed a system to manage the opposing forces exerted by muscles. Muscles can only contract. When one muscle relaxes, an opposing one contracts. Each one of the 60,000 motor neurons in the spinal cord has up to 20,000 interneurons, which report back the movements of other muscles. Feedback links inform the muscle of actions already taken and feed forward links, of actions about to be taken.

Combinatorial memories within a nerve cells cause the cell to recognize incoming patterns of impulses and fire to activate or inhibit muscles. Since muscle movements are not computed, but learned through habit and practice, combinatorial memories manage this process. The smooth movement of a centipede or the skilled movements of a dancer are both dependent on microscopically precise combinatorial memories. These memories control the exact flexing of a muscle with millisecond precision. The selection of the behavior of the moment is decided by the LS with inherited and acquired combinatorial memories.

Limbic System Decisions
Is There An Evolutionary Precedent To The Limbic System?

The spinal cord coordinates complex and opposing neural interactions. The limbic system has a million fibers, which carry a massive range of control signals along with complex and conflicting emotion signals. Fear, sadness, disgust, contempt, curiosity, surprise, love, pleasure, embarrassment, guilt, and shame impact on behavior. Competing with each other, emotions are generally agreeable, or disagreeable. Feedback/feed forward links within the LS grant control to a single emotion, while inhibiting conflicting ones. Resentment gives way to respect. In the LS, nature adapted the spinal cord motor control system to suit the new emotional controls.

Limbic System
How Did Emotional Controls Evolve?

The LS assembles a massive store of combinatorial memories, which shift the focus of the mind with maturity. Evolutionary processes developed to inhibit the more primitive instincts to enable more cultured decisions. The hypothalamus controls essential homeostasis by motivating the organism with pleasure and triggering avoidance behaviors. Infant development witnesses the inhibition of instinctive responses by the wisdom of higher levels. During the first few months, elementary touch, hunger and body movement sensations trigger screaming, crying, or rudimentary smiles and gurgles of pleasure. With development, these responses are overruled by the rational decisions of the PFR, or the emotional outbursts of the amygdala, or the insular cortex. Intuition and combinatorial codes enable the LS to focus of the mind instantly on a single objective.

Limbic System
How Do Codes Overrule Prefrontal Will?

You can personally verify that your LS over rules the decisions of your will. Your will is expressed by your PFR, when you consciously decide to lift up your arm. Your will is in control when you are alone in your room. But, if your PFR decides to raise your arm high, when you are standing in an elevator with other passengers, your hand will not move. The LS has over ruled PFR, since the action is inappropriate. You can verify that the decisions of the system bypass consciously willed decisions, when they do not pass the Worthwhile, Appropriate, Safe, or Practical (WASP) criteria.

The system will not implement a conscious decision, if it does not fit the WASP criteria. Conscious decisions are initiated by the PFR, while emotional decisions are initiated by the amygdala, or the insular cortex. It is obvious that only the vast inherited wisdom of combinatorial codes can enable the LS to make critical survival choices between competitive demands, bypassing your PFR.

This page was last updated on 14-Jan-2016.

Jordan Peterson - Happiness
Can Artificial Intelligence Replace Humans?
The Hard Problem Of Consciousness