KNOW YOURSELF PODCAST Listen each week, to one podcast. Based on practical self improvement principles. From the insight of an engineer, back in 1989, about the data processing structure of the human mind, recognizing and filtering patterns, without stopping. Storing patterns of data. Of guilt, shame, fear.  About silencing painful subconscious patterns, becoming self aware, strengthening common sense.  ON YouTube  Can Artificial Intelligence Replace Humans?  Mind Control Tips  Can

How Does The Brain Remember?

How does the brain remember the 9/11, falling New York towers? Science has discovered many links to the mystery of human memory. This website suggests that those links point to a nerve cell memory for the combinatorial firing patterns exchanged between billions of cells in the network. The combinatorial  memories of the 9/11 incident were stored by an organ called the hippocampus in the space/time/emotions context in the extensive sensory regions of the brain. Subsequently, when the sensory neurons sense those contextual combinatorial patterns of 9/11, they fire to cause PFR to consciously recall the incident. Combinatorial patterns can have infinite data storage capacity. Only such a possibility can explain the mind.  A massive base of knowledge can reasonably explain the astonishing brilliance of human intelligence.

  • Combinatorial  codes can store astronomically large memories.
  • Edvard Moser reports that event memories are stored in extensive regions of the brain.
  • Parallel projections in the nervous system indicates the use of combinatorial pattterns for communication in the nervous system.
  • Pixel specific "barrels' exist all over the cortex.
  • Cortical circuits indicate a direct recording channel and a broadcasting channel.
  • The brain has declarative memories, working memories, implicit memories and procedural memories.
  • LTP, neural plasticity and neuronal reverberation support memories.
  • The hippocampus records declarative memories through LTP and neuronal reverberation.
  • Place cells, head direction cells, grid cells, and border cells record the space time context of events.

Can An Algorithm Be Controlling The Mind?
I am not a physician, but an engineer. Way back in 1989, I catalogued how the ELIMINATION approach of an AI Expert System could reveal a way by which the nervous system could store and retrieve astronomically large memories.  That insight is central to the six unique new premises presented in this website. 

These new premises could explain an enigma.  A physician is aware of thousands of diseases and their related symptoms.  How does he note a symptom and focus on a single disease in less than half a second?  How could he identify Disease X out of 8000 diseases with just a glance?  

First, the total born and learned knowledge available to the doctor could not exist anywhere other than as the stored/retrieved data within the 100 billion neurons in his brain.  The perceptions, sensations, feelings and physical activities of the doctor could only be enabled by the electrical impulses flowing through the axons of those neurons.  The data enabling that process could be stored as digital combinations.

Second, combinatorial decisions of neurons cannot be made by any entity other than the axon hillock, which decides the axonal output of each neuron.  The hillock receives hundreds of inputs from other neurons.  Each hillock makes the pivotal neuronal decision about received inputs within 5 milliseconds.  A
xon hillocks could be storing digital combinations.  It could be adding each new incoming digital combination to its memory store.  The hillock could fire impulses, if it matched a stored combination. If not, it could inhibit further impulses.  Using stored digital data to make decisions about incoming messages could make the axon hillocks intelligent.

Third, combinations are reported to enable a powerful coding mode for axon hillocks.  Olfactory combinatorial data is known (Nobel Prize 2004) to store memories for millions of smells.  Each one of 100 billion axon hillocks have around a 1000 links  to other neurons.  The hillocks can mathematically store more combinations than there are stars in the sky. Each new digital combination could be adding a new relationship link.  In this infinite store, specific axon hillocks could be storing all the symptom = disease (S=D) links known to the doctor as digital combinations.

Fourth, instant communication is possible in the nervous system.  Within five steps, information in one hillock can reach all other relevant neurons.  Just 20 Ms for global awareness.  Within the instant the doctor observes a symptom, 
feedback and feed forward links could inform every S=D link of the presence of the symptom. Only the S=D link of Disease X could be recalling the combination and recognizing the symptom.

Fifth, on not recognizing the symptom, all other S=D hillocks could be instantly inhibiting their impulses. The S=D links of Disease X could be continuing to fire. Those firing S=D link would be recalling past complaints, treatments and signs of Disease X, confirming the diagnosis.  This could be enabling axon hillocks to identify Disease X out of 8000 in milliseconds.

Worldwide interest in this website is acknowledging its rationale. Not metaphysical theories, but processing of digital memories in axon hillocks could be explaining innumerable mysteries of the mind.  Over three decades, this website has been assembling more and more evidence of the manipulation of emotional and physical behaviors by narrowly focused digital pattern recognition.  It has also been receiving over 2 million page views from over 150 countries.

How Does The Brain Remember
What Is Combinatorial Coding?

Combinatorial codes were discovered to be applied for hundreds of millions of years by the olfactory system (Nobel Prize 2004) for the instant identification of odors. Leslie Vosshall reports that, in her lab, ordinary volunteers, (not wine tasters or perfumers), could clearly distinguish between different combinations of 128 odor molecules, indicating an average human ability to differentiate between 1 trillion smells. Combinatorial pattern recognition enables people to remember and recognize any one of 10,000 images, shown to them at one second intervals. 

Combinatorial memories can be virtually infinite. A neuron with just 100 dendrites can receive an infinity of combinatorial messages. It can accept 1, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000 unique combinatorial patterns! The human visual system has not 100, but millions of individual pixels, which can represent more combinations than the stars in the sky. The concept that such combinatorial memories support brain functions is also confirmed by the makeup of many of its structures and mechanisms.

How Does The Brain Remember
Are Memories Location Specific?

Innumerable regions of the brain participate in the recall of any memory. Edvard Moser reported, in 2011, that memories are stored in different regions of the brain and that a consolidated memory develops in about 125 milliseconds. He monitored different parts of a rat's brain as it explored its neighborhood. Different lighting schemes in a single box tricked the rat into believing it was in different neighborhoods. Distinctly different memory locations became activated in the rat's brain in each visualized location.

The rat instantly adjusted to a new environment indicated by a different lighting scheme by recalling a different memory from a different part of the brain. Moser discovered that each memory was an integral whole for the 125 millisecond period. When the environment changed, the brain of the rat switched the memory to recollect details of a new background. There was no confusion between the memory location barrels in the rat's brain, when the changed environment was “completely different.”

How Does The Brain Remember
What Are Parallel Projections?

combinatorial pattern is a precise geographic arrangement, which can be transmitted through a parallel projection of nerve fibers. Consider the messages carried by a bundle of glass fibers. If each fiber carries an individual message, the relative location of the fibers will be irrelevant. But suppose each fiber carries one pixel of a black and white picture. In this case, any change in the relative positions of the fibers between the sending and receiving ends will lose the transmitted combinatorial "picture." If the objective is to transmit a combinatorial pattern, the fibers have to be projected in parallel. Parallel projections are extensively present in the nervous system. 

Throughout their growth, the axons of nerve cells extend and map on to specific target regions in parallel projections. Each area of the somato-sensory cortex is proportionally linked to the number of nerve endings in the corresponding part of the body. Touch sensory cells in your fingertip have identical proximity relationships when they finally report touch to the cortex. Similar parallel projections exist in numerous other regions. Parallel projections are clear evidence of combinatorial communications in the nervous system.

How Does The Brain Remember
What Are Pixel Specific Barrels?

Combinatorial patterns can be accurately projected on screens. Science reports that visual images travel in parallel projections from your eyes to be mapped exactly as seen, in your visual cortex. Visual images are received and recalled from the same regions of the visual cortex. Visual receptors send signals of each pixel of light to cells in the visual cortex.

Each pixel is recorded by a vertical barrel of thousands of nerve cells within a diameter of 200 to 500 microns, extending through all layers of the cortex. Each barrel is linked by a single axon which transmits that pixel to the cortex. Thousands of neurons in it act together, with connected timings, when a stimulus is received from its receptor field. These vertical barrels represent the pixel specific component of a combinatorial pattern, which is further interpreted by other regions of the cortex.

Above and beyond simple pictures, combinatorial patterns can precisely categorize all experiences, including the infinite variations of the color, texture, outlines and edges of a seen object. The visual system has dedicated functional groups of over 30 processing centers, which finally dispatch a sophisticated combinatorial interpretation of a perceived object to the PFR - a functional intelligence. A rabbit behind a picket fence is not seen as the slices of a rabbit, but as a whole animal. Finally, a complex combinatorial pattern received by the PFR enables you to recall an image and "know" that it is a rabbit.

How Does The Brain Remember
How Is Current Info Broadcast To The Nervous System?

Recallable memories are called declarative memories. Such memories are generally stored in the context of geographic and emotional details. At any moment in time, you are present in a geographic context and your mind is dominated by a single group of emotions. An intuitive decision making process selects the current emotion. If you are angry, you remember the wrongs committed by your opponent. If you are fearful, you remember the previous instances, where you failed. Your motor responses also respond to your emotions. The combinatorial geographic and emotional patterns recall your memories and control your actions.

The vertical barrels in the outer layers of the cortex have access to the emotion signals from the limbic system and to the space/time relationship signals recorded by the hippocampus. These layers have both radial and parallel fibers. Radiating downwards from the cortex are millions of fibers which directly link the Barrels through the thalamus to all sensory and motor functions. This link is called the "specific link". The cortex also had a surface layer which runs a thick network of fibers parallel to the surface. These parallel fibers are also linked to the thalamus.

The parallel link was recognized when it was discovered that stimulation of the "non-specific nuclei" of the thalamus led to wide-spread "recruiting activity" in the outer layers of the cortex. The combinatorial patterns of context and the the current emotion are "broadcast" through the "non-specific nuclei" in the outer layers of the cortex. Those barrels, which recognize a specific contextual signal, fire to recall an image, or to trigger a motor response. That is how the brain remembers and acts.

How Does The Brain Remember
What Are The Types Of Memories?

Apart from declarative memories, the mind has other types of memories. It has working memories, implicit memories and procedural memories. Working memories enable the focus of attention and are available only for brief periods. Implicit memories operate in subconscious regions and are not available for recall. Procedural memories directly empower the motor system to play a musical instrument, or to ride a bike. Such memories are acquired through practice and cannot be consciously recalled. But, they are available as a remembered ability. Only declarative memories are available for conscious recall.

How Does The Brain Remember
How Does The System Record Memories?

The nervous system has several methods for storing combinatorial memories in the nerve cells. Long term potentiation (LTP) enables neurons to become sensitive to a single contextual signal. A neuron may also grow new dendrites (neural plasticity), increasing accessibility to active communication channels. Implicit memories are recorded during the normal exchanges between nerve cells. Repetitive firing, such as during repeated physical exercises save procedural memories.

Working memories and declarative memories store combinatorial signals of the tactile, gustatory, olfactory, spatial, and motor activities produced by the free exploration of novel objects. Such memories are stored by an organ called the hippocampus, through a process of repetitive iteration of combinatorial patterns. This process is called neuronal reverberations, where groups of linked nerve cells fire in rhythm. When the hippocampus signals trigger repetitive firing by the currently active groups of neurons, the precise contextual combinatorial links are stored as combinatorial memories in the active circuits.

How Does The Brain Remember
What Does The Hippocampus Do?

Surgical destruction of the hippocampus caused Henry Gustav Molaison (HM) to lose his ability to remember events, which occurred even a few seconds earlier. But, HM retained memories for events long past. The hippocampus acts to record the "declarative" memories by providing strong space/time book marks for the memories of significant experiences of the mind in the sensory and recognition regions of the cortex.

During REM sleep, the hippocampus replays the context of significant waking experiences. LTP circuits within the organ increase synaptic strength for such links. Neuronal reverberation, where linked nerve cells fire in rhythm, record the combinatorial patterns in all the linked groups of cells. Over many sleep/wake cycles, the organ spreads associative learning to extensive regions of the nervous system.

Researchers at MIT trained rats to run along a circular track for a food reward. Their brain activity was monitored during the task and during sleep. While the animal ran, its brain created a distinctive pattern of neurons firing in the hippocampus. The researchers then examined more than 40 REM episodes recorded while the rats slept. The correlation was so close that the researchers found that as the animal dreamed, they could reconstruct where it would be in the maze if it were awake and whether the animal was dreaming of running or standing still.

Nature has provided a mechanism to replay the space/time context through rapid eye movements during sleep. During sleep, the thalamo-cortical link enables the hippocampus to dispatch the combinatorial signals, which reinforce emotion memories in the vertical barrels of the cortex. Incremental learning continues several nights after memory acquisition due to the progressive recruitment of larger neuronal networks over time. Subsequently, the emotions are recognized by the barrels, which fire to recall sensory memories. Such memories, can recall events in the space/time/emotion context after months and years. With damage to the hippocampus, the nervous system loses its ability to bookmark, store and consolidate its episodic memories.

How Does The Brain Remember
What Are Place Cells?

Only precise combinatorial reference links can recall the memories in the vast databases of the mind. The nervous system constantly monitors its current location. The hippocampus uses eye movement and head direction data as an inertial compass to chart geographic movement and position. Visual and sound information triangulate the location. These eye and ear coordinates are mapped by head direction cells, grid cells, and border cells in the regions, which were discovered to contain a neural map of the spatial environment in rats. The firing cells in the arrays lack any spatial topography in the representation. Cells lying next to each may have uncorrelated spatial firing patterns.

The place fields record the place looked at by an animal in four dimensions, including time. The time dimensioned combinatorial signals by the place cells in the hippocampus trace the directions, objectives and movements of an individual in his environment. Such memories may be both for events and experiences as well as for semantic concepts (ideas converted into words and sentences). Damage to the hippocampus causes a loss of this key reference point for episodic memories. All evidence points to pattern recognition by the mind, using combinatorial patterns.

The hippocampus stores memories of your experiences of a lifetime as combinatorial patterns in many regions of the brain. It is a network, which accumulates knowledge and acts intelligently. If these remembered combinatorial patterns were coded into 500 page books, they would occupy cubic miles of space. Your computer has separate programs, which manage word processing and spreadsheet computations, along with all the related data. They are groups of codes, located in different memory locations, which utilize the same circuits. The coded memories contain your experiences over a lifetime. They also contain strategies from battles fought millions of years ago. The vast scope and power of your combinatorial memories manage your life.

This page was last updated on 31-Dec-2013.



KNOW YOURSELF PODCAST Listen each week, to one podcast. Based on practical self improvement principles. From the insight of an engineer, back in 1989, about the data processing structure of the human mind, recognizing and filtering patterns, without stopping. Storing patterns of data. Of guilt, shame, fear.  About silencing painful subconscious patterns, becoming self aware, strengthening common sense.  ON YouTube  Can Artificial Intelligence Replace Humans?  Mind Control Tips  Can


Jordan Peterson - Happiness
Can Artificial Intelligence Replace Humans?
The Hard Problem Of Consciousness


SCROLL DOWN
FOR MORE....